Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652212

RESUMO

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Assuntos
Diabetes Insípido Nefrogênico , Modelos Animais de Doenças , Etanolaminas , Animais , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Camundongos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Masculino , Aquaporina 2/metabolismo , Aquaporina 2/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Humanos
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542420

RESUMO

Chronic kidney disease (CKD) represents a major public health burden with increasing prevalence. Current therapies focus on delaying CKD progression, underscoring the need for innovative treatments. This necessitates animal models that accurately reflect human kidney pathologies, particularly for studying potential reversibility and regenerative mechanisms, which are often hindered by the progressive and irreversible nature of most CKD models. In this study, CKD was induced in mice using a 0.2% adenine-enriched diet for 4 weeks, followed by a recovery period of 1 or 2 weeks. The aim was to characterize the impact of adenine feeding on kidney function and injury as well as water and salt homeostasis throughout disease progression and recovery. The adenine diet induced CKD is characterized by impaired renal function, tubular injury, inflammation, and fibrosis. A significant decrease in urine osmolality, coupled with diminished aquaporin-2 (AQP2) expression and membrane targeting, was observed after adenine treatment. Intriguingly, these parameters exhibited a substantial increase after a two-week recovery period. Despite these functional improvements, only partial reversal of inflammation, tubular damage, and fibrosis were observed after the recovery period, indicating that the inclusion of the molecular and structural parameters is needed for a more complete monitoring of kidney status.


Assuntos
Aquaporina 2 , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Aquaporina 2/metabolismo , Água/metabolismo , Adenina/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Inflamação/metabolismo , Fibrose
4.
Physiol Rep ; 12(5): e15972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467563

RESUMO

With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.


Assuntos
Aquaporina 2 , Galinhas , Animais , Galinhas/genética , Aquaporina 2/genética , Aquaporina 2/metabolismo , Água/metabolismo , Temperatura Alta , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396944

RESUMO

Aquaporins (AQPs) constitute a wide family of water channels implicated in all kind of physiological processes. Zinc is the second most abundant trace element in the human body and a few studies have highlighted regulation of AQP0 and AQP4 by zinc. In the present work, we addressed the putative regulation of AQPs by zinc cations in silico through molecular dynamics simulations of human AQP0, AQP2, AQP4, and AQP5. Our results align with other scales of study and several in vitro techniques, hence strengthening the reliability of this regulation by zinc. We also described two distinct putative molecular mechanisms associated with the increase or decrease in AQPs' water permeability after zinc binding. In association with other studies, our work will help deciphering the interaction networks existing between zinc and channel proteins.


Assuntos
Aquaporinas , Simulação de Dinâmica Molecular , Humanos , Aquaporina 2/metabolismo , Zinco/metabolismo , Água/química , Reprodutibilidade dos Testes , Aquaporinas/metabolismo , Permeabilidade , Cátions/metabolismo
6.
Brain Res ; 1830: 148810, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365130

RESUMO

Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.


Assuntos
Aquaporina 2 , Galinhas , Animais , Galinhas/metabolismo , Aquaporina 2/metabolismo , Temperatura Alta , Resposta ao Choque Térmico , RNA não Traduzido/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária
7.
Hypertension ; 81(3): 541-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164755

RESUMO

BACKGROUND: KDM6A (Lysine-Specific Demethylase 6A) is a specific demethylase for histone 3 lysine (K) 27 trimethylation (H3K27me3). The purpose of this study is to investigate whether KDM6A in renal tubule cells plays a role in the regulation of kidney function and blood pressure. METHODS: We first crossed Ksp-Cre+/- and KDM6Aflox/flox mice for generating inducible kidney-specific deletion of KDM6A gene. RESULTS: Notably, conditional knockout of KDM6A gene in renal tubule cells (KDM6A-cKO) increased H3K27me3 levels which leads to a decrease in Na excretion and elevation of blood pressure. Further analysis showed that the expression of NKCC2 (Na-K-2Cl cotransporter 2) and NCC (Na-Cl cotransporters) was upregulated which contributes to impaired Na excretion in KDM6A-cKO mice. The expression of AQP2 (aquaporin 2) was also increased in KDM6A-cKO mice, which may facilitate water reabsorption in KDM6A-cKO mice. The expression of Klotho was downregulated while expression of aging markers including p53, p21, and p16 was upregulated in kidneys of KDM6A-cKO mice, indicating that deletion of KDM6A in the renal tubule cells promotes kidney aging. Interestingly, KDM6A-cKO mice developed salt-sensitive hypertension which can be rescued by treatment with Klotho. KDM6A deficiency induced salt-sensitive hypertension likely through downregulation of the Klotho/ERK (extracellular signal-regulated kinase) signaling and upregulation of the WNK (with-no-lysine kinase) signaling. CONCLUSIONS: This study provides the first evidence that KDM6A plays an essential role in maintaining normal tubular function and blood pressure. Renal tubule cell specific KDM6A deficiency causes hypertension due to increased H3K27me3 levels and the resultant downregulation of Klotho gene expression which disrupts the Klotho/ERK/NCC/NKCC2 signaling.


Assuntos
Hipertensão , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Pressão Sanguínea/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Histonas/metabolismo , Aquaporina 2/metabolismo , Lisina/metabolismo , Rim/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo
8.
Am J Physiol Renal Physiol ; 326(3): F545-F559, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205543

RESUMO

Prior studies showed that epidermal growth factor (EGF) inhibits vasopressin-stimulated osmotic water permeability in the renal collecting duct. Here, we investigated the underlying mechanism. Using isolated perfused rat inner medullary collecting ducts (IMCDs), we found that the addition of EGF to the peritubular bath significantly decreased 1-deamino-8-d-arginine vasopressin (dDAVP)-stimulated water permeability, confirming prior observations. The inhibitory effect of EGF on water permeability was associated with a reduction in intracellular cAMP levels and protein kinase A (PKA) activity. Using phospho-specific antibodies and immunoblotting in IMCD suspensions, we showed that EGF significantly reduces phosphorylation of AQP2 at Ser264 and Ser269. This effect was absent when 8-cpt-cAMP was used to induce AQP2 phosphorylation, suggesting that EGF's inhibitory effect was at a pre-cAMP step. Immunofluorescence labeling of microdissected IMCDs showed that EGF significantly reduced apical AQP2 abundance in the presence of dDAVP. To address what protein kinase might be responsible for Ser269 phosphorylation, we used Bayesian analysis to integrate multiple-omic datasets. Thirteen top-ranked protein kinases were subsequently tested by in vitro phosphorylation experiments for their ability to phosphorylate AQP2 peptides using a mass spectrometry readout. The results show that the PKA catalytic-α subunit increased phosphorylation at Ser256, Ser264, and Ser269. None of the other kinases tested phosphorylated Ser269. In addition, H-89 and PKI strongly inhibited dDAVP-stimulated AQP2 phosphorylation at Ser269. These results indicate that EGF decreases the water permeability of the IMCD by inhibiting cAMP production, thereby inhibiting PKA and decreasing AQP2 phosphorylation at Ser269, a site previously shown to regulate AQP2 endocytosis.NEW & NOTEWORTHY The authors used native rat collecting ducts to show that inhibition of vasopressin-stimulated water permeability by epidermal growth factor involves a reduction of aquaporin 2 phosphorylation at Ser269, a consequence of reduced cAMP production and PKA activity.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Ratos , Animais , Fosforilação , Aquaporina 2/metabolismo , Desamino Arginina Vasopressina/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Água/metabolismo , Ratos Sprague-Dawley , Teorema de Bayes , Túbulos Renais Coletores/metabolismo , Vasopressinas/farmacologia , Proteínas Quinases/metabolismo , Permeabilidade
9.
Am J Physiol Renal Physiol ; 326(1): F152-F164, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969102

RESUMO

As miR-137 is a regulator of aquaporin (AQP)2 expression and tumor necrosis factor (TNF) inhibits the expression of several extrarenal AQPs, we tested the hypothesis that TNF inhibits AQP2 in the kidney via a miR-137-dependent mechanism. AQP2 mRNA and protein expression decreased ∼70% and 53%, respectively, in primary renal inner medullary collecting duct (IMCD) cells transfected with a miRNA mimic of mmu-miR-137, suggesting that miR-137 directly targets AQP2 mRNA in these cells. Exposure of IMCD cells for 2 h to 400 mosmol/kgH2O medium increased mmu-miR-137 mRNA expression about twofold, conditions that also increased TNF production approximately fourfold. To determine if the increase in mmu-miR-137 mRNA expression was related to the concomitant increase in TNF, IMCD cells were transfected with a lentivirus construct to silence TNF. This construct decreased mmu-miR-137 mRNA expression by ∼63%, suggesting that TNF upregulates the expression of miR-137. Levels of miR-137 also increased approximately twofold in IMCD tubules isolated from male mice given 1% NaCl in the drinking water for 3 days. Intrarenal lentivirus silencing of TNF increased AQP2 mRNA levels and protein expression concomitant with a decrease in miR-137 levels in tubules isolated from mice given NaCl. The changes in AQP2 expression levels affected the diluting ability of the kidney, which was assessed by measuring urine osmolality and urine volume, as the decrease in these parameters after renal silencing of TNF was prevented on intrarenal administration of miR-137. The study reveals a novel TNF function via a miR-137-dependent mechanism that regulates AQP2 expression and function.NEW & NOTEWORTHY An emerging intratubular tumor necrosis factor system, functioning during normotensive noninflammatory conditions, acts as a breaking mechanism that attenuates both the increases in Na+-K+-2Cl- cotransporter and aquaporin-2 induced by arginine vasopressin, thereby contributing to the regulation of electrolyte balance and blood pressure. A greater appreciation for the role of cytokines as mediators of immunophysiological responses may help reveal the relationship between the immune system and other physiological systems.


Assuntos
Aquaporinas , Túbulos Renais Coletores , MicroRNAs , Camundongos , Masculino , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cloreto de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aquaporinas/metabolismo
10.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990364

RESUMO

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Assuntos
Acidose Tubular Renal , Alcalose , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Humanos , Masculino , Camundongos , Animais , Acidose Tubular Renal/genética , Furosemida/farmacologia , Aquaporina 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rim/metabolismo , Alcalose/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renais Coletores/metabolismo
11.
Am J Physiol Cell Physiol ; 326(1): C194-C205, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047301

RESUMO

The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration. Conventional fluorescent microscopy provides a lateral resolution of ∼250 nm, which is insufficient to resolve the AQP2-containing endosomes/vesicles. Therefore, detailed information regarding the AQP2 vesicular population is still lacking. Newly established 4.5x Expansion Microscopy (ExM) can increase resolution to 60-70 nm. Using 4.5x ExM, we detected AQP2 vesicles/endosomes as small as 79 nm considering an average expansion factor of 4.3 for endosomes. Using different markers of the endosomal system provided detailed information of the cellular AQP2 itinerary upon changes in endogenous cAMP levels. Before cAMP elevation, AQP2 colocalized with early and recycling, but not late endosomes. Forskolin-induced cAMP increase was characterized by AQP2 insertion into the plasma membrane and AQP2 withdrawal from large perinuclear endosomes as well as some localization to lysosomal compartments. Forskolin washout promoted AQP2 endocytosis where AQP2 localized to not only early and recycling endosomes but also late endosomes and lysosomes indicating increased AQP2 degradation. Thus, our results show that 4.5 ExM is an attractive approach to obtain detailed information regarding AQP2 shuttling.NEW & NOTEWORTHY Renal aquaporin-2 (AQP2) imaged by expansion microscopy provides unprecedented 3-D information regarding the AQP2 itinerary in response to changes in cellular cAMP.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Aquaporina 2/metabolismo , Microscopia , Colforsina/farmacologia , Rim/metabolismo , Membrana Celular/metabolismo , Água/metabolismo , Túbulos Renais Coletores/metabolismo
12.
Toxicol Lett ; 392: 22-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123106

RESUMO

Perfluorooctanoic acid (PFOA) exposure is associated with kidney dysfunction, however the exact mechanisms by which PFOA induces nephrotoxicity and the specific involvement of aquaporins (AQPs) in kidney tissue remains unclear. In this study, adult male Sprague-Dawley (SD) rats were exposed to PFOA by oral gavage for 28 days and compared with controls. Body weight, water intake and urine volume were recorded daily. At the end of the experiment, blood and kidney samples were collected, and serum urea, creatine and uric acid levels were assessed. The renal expression levels of water channel proteins AQP1, AQP3, AQP2 and p-AQP2 (Ser256) were observed by immunohistochemical staining, and the corresponding transcription levels were detected by Western blot and qRT-PCR. The results showed that PFOA exposure inhibited weight gain and increased water intake, urine volume, kidney weight and renal visceral index. PASM staining and transmission electron microscopy revealed pathological thickening of the glomerular capsule and basement membrane. Serum urea levels were increased, while serum creatine levels were decreased compared to controls. Additionally, the expression levels of AQP1, AQP3, AQP2 and p-AQP2 in kidney tissues were decreased, and the phosphorylation of AQP2 at Ser256 was inhibited. In conclusion, we demonstrate that PFOA exposure can damage the renal filtration barrier and reduce the expression level of AQPs in renal tissues, leading to renal filtration and reabsorption disorders.


Assuntos
Aquaporina 2 , Caprilatos , Creatina , Fluorocarbonos , Ratos , Animais , Masculino , Aquaporina 2/genética , Aquaporina 2/metabolismo , Regulação para Baixo , Creatina/metabolismo , Ratos Sprague-Dawley , Rim/metabolismo , Ureia/metabolismo
13.
Nutrients ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068817

RESUMO

Abnormal lipid metabolism increases the relative risk of kidney disease in patients with a single kidney. Using transcriptome analysis, we investigated whether a high-fat diet leads to abnormalities in lipid metabolism and induces kidney cell-specific damage in unilateral nephrectomy mice. Mice with unilateral nephrectomy fed a high-fat diet for 12 weeks exhibited progressive renal dysfunction in proximal tubules, including lipid accumulation, vacuolization, and cell damage. Ring finger protein 20 (RNF20) is a ligase of nuclear receptor corepressor of peroxisome proliferator-activated receptors (PPARs). The transcriptome analysis revealed the involvement of RNF20-related transcriptome changes in PPAR signaling, lipid metabolism, and water transmembrane transporter under a high-fat diet and unilateral nephrectomy. In vitro treatment of proximal tubular cells with palmitic acid induced lipotoxicity by altering RNF20, PPARα, and ATP-binding cassette subfamily A member 1 (ABCA1) expression. PPARγ and aquaporin 2 (AQP2) expression decreased in collecting duct cells, regulating genetic changes in the water reabsorption process. In conclusion, a high-fat diet induces lipid accumulation under unilateral nephrectomy via altering RNF20-mediated regulation and causing functional damage to cells as a result of abnormal lipid metabolism, thereby leading to structural and functional kidney deterioration.


Assuntos
Dieta Hiperlipídica , Nefropatias , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aquaporina 2/metabolismo , Rim/metabolismo , Nefrectomia/efeitos adversos , Nefropatias/metabolismo , PPAR alfa/metabolismo , Lipídeos , Água/metabolismo , Metabolismo dos Lipídeos/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
J Physiol ; 601(23): 5437-5451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860942

RESUMO

Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Endossomos/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Água/metabolismo , Fosforilação
15.
BMC Nephrol ; 24(1): 309, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880610

RESUMO

INTRODUCTION: Nephrotic syndrome (NS) is characterized by renal sodium and water retention. The mechanisms are not fully elucidated. METHODS: The NS rat model was established by single intraperitoneal injection of 100 mg/kg puromycin aminonucleoside (PAN). The plasma electrolyte level and urinary sodium excretion were monitored dynamically. The changes of some sodium transporters, including epithelial Na+ channel (ENaC), Na+/H+ exchanger 3 (NHE3), Na+-K+-2Cl- cotransporter 2 (NKCC2) and Na+-Cl- cotransporter (NCC) in renal cortex at different time points and the level of peripheral circulation factors were detected. RESULTS: The urinary sodium excretion of the model group increased significantly on the first day, then decreased compared with the control group, and there was no significant difference between the model group and the control group on the 12th day. The changes of peripheral circulation factors were not obvious. Some sodium transporters in renal cortex increased in varying degrees, while NKCC2 decreased significantly compared with the control group. CONCLUSIONS: The occurrence of NS edema may not be related to the angiotensin system. The decrease of urinary sodium excretion is independent of the development of albuminuria. During the 18 days of observation, it can be divided into three stages: sodium retention, sodium compensation, and simple water retention. The mechanism is related to the increased expression of α-ENaC, γ-ENaC, NHE3 and NCC in a certain period of time, the compensatory decrease of NKCC2 expression and the continuous increase of aquaporin 2 (AQP2) expression.


Assuntos
Síndrome Nefrótica , Ratos , Animais , Síndrome Nefrótica/metabolismo , Puromicina Aminonucleosídeo/toxicidade , Sódio/urina , Trocador 3 de Sódio-Hidrogênio/metabolismo , Aquaporina 2/metabolismo , Canais Epiteliais de Sódio , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membro 3 da Família 12 de Carreador de Soluto , Água/metabolismo
16.
J Biol Chem ; 299(12): 105371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865316

RESUMO

Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteômica , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cromatografia Líquida , Sistemas CRISPR-Cas , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Fosforilação , Espectrometria de Massas em Tandem , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Deleção de Genes , RNA-Seq , Biologia Computacional , Motivos de Aminoácidos , Regulação para Baixo , Técnicas In Vitro
17.
Adv Med Sci ; 68(2): 306-313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37708639

RESUMO

PURPOSE: Chronic pancreatitis (CP) is associated with serious complications and reduced quality of life. Kidney failure is a frequent complication of acute pancreatitis (AP), however limited information is available regarding the impact of CP on this condition. In the kidney, 9 aquaporins (AQPs) are expressed to maintain body water homeostasis and concentrate urine. The purpose of this study was to morphologically assess and analyze the location and expression of AQP2, AQP3 and AQP4 and determine whether CP affects renal structure and expression of AQPs in collecting duct (CD) principal cells. MATERIALS/METHODS: CP was induced in domestic pigs through intramuscular injections of cerulein (1 â€‹µg/kg â€‹bw/day for 6 days; n â€‹= â€‹5); pigs without CP (n â€‹= â€‹5) were used as a control group. Kidney samples were collected 6 weeks after the last injection and subjected to histological examination. Expression of AQPs was determined by immunohistochemistry and Western blot. RESULTS: The kidneys of animals with CP exhibited moderate changes, including glomerular enlargement, increased collagen percentage, numerous stromal erythrorrhages and inflammatory infiltrations compared to control group. Although the total abundance of AQP2 in the CD decreased in pigs after cerulein administration, the difference was not statistically significant. Expression of AQP3 and AQP4 was limited to the basolateral membrane of the CD cells. AQP4 abundance remained relatively stable in both groups, while AQP3 expression increased nearly three-fold in pigs with CP. CONCLUSION: This study identified morphological alterations and a statistically significant increase in the expression of renal AQP3 when pigs developed CP.


Assuntos
Aquaporina 2 , Pancreatite Crônica , Animais , Suínos , Aquaporina 2/metabolismo , Ceruletídeo/metabolismo , Doença Aguda , Qualidade de Vida , Aquaporina 3/metabolismo , Rim/metabolismo
18.
Am J Physiol Renal Physiol ; 325(6): F717-F732, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767569

RESUMO

Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.


Assuntos
Desidratação , Transcriptoma , Camundongos , Animais , Masculino , Feminino , Desidratação/metabolismo , Cromatina/genética , Cromatina/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Rim/metabolismo , Água/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1867(11): 130449, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748662

RESUMO

Nanodomains are a biological membrane phenomenon which have a large impact on various cellular processes. They are often analysed by looking at the lateral dynamics of membrane lipids or proteins. The localization of the plasma membrane protein aquaporin-2 in nanodomains has so far been unknown. In this study, we use total internal reflection fluorescence microscopy to image Madin-Darby Canine Kidney (MDCK) cells expressing aquaporin-2 tagged with mEos 3.2. Then, image mean squared displacement (iMSD) approach was used to analyse the diffusion of aquaporin-2, revealing that aquaporin-2 is confined within membrane nanodomains. Using iMSD analysis, we found that the addition of the drug forskolin increases the diffusion of aquaporin-2 within the confined domains, which is in line with previous studies. Finally, we observed an increase in the size of the membrane domains and the extent of trapping of aquaporin-2 after stimulation with forskolin.


Assuntos
Aquaporina 2 , Animais , Cães , Aquaporina 2/metabolismo , Colforsina/farmacologia , Colforsina/metabolismo , Difusão , Membrana Celular/metabolismo , Células Madin Darby de Rim Canino
20.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450603

RESUMO

Patients with secondary adrenal insufficiency can present with impaired free water excretion and hyponatremia, which is due to the enhanced secretion of vasopressin (AVP) despite increased total body water. AVP is produced in magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVH) and supraoptic nucleus and in parvocellular corticotropin-releasing factor (CRF) neurons in the PVH. This study aimed to elucidate whether magnocellular AVP neurons or parvocellular CRF neurons coexpressing AVP are responsible for the pathogenesis of hyponatremia in secondary adrenal insufficiency. The number of CRF neurons expressing copeptin, an AVP gene product, was significantly higher in adrenalectomized AVP-floxed mice (AVPfl/fl) than in sham-operated controls. Adrenalectomized AVPfl/fl mice supplemented with aldosterone showed impaired water diuresis under ad libitum access to water or after acute water loading. They became hyponatremic after acute water loading, and it was revealed under such conditions that aquaporin-2 (AQP2) protein levels were increased in the kidney. Furthermore, translocation of AQP2 to the apical membrane was markedly enhanced in renal collecting duct epithelial cells. Remarkably, all these abnormalities observed in the mouse model for secondary adrenal insufficiency were ameliorated in CRF-AVP-/- mice that lacked AVP in CRF neurons. Our study demonstrates that CRF neurons in the PVH are responsible for the pathogenesis of impaired water excretion in secondary adrenal insufficiency.


Assuntos
Insuficiência Adrenal , Hiponatremia , Camundongos , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hiponatremia/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Vasopressinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Diurese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...